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We present an optical theorem for evanescent �near field� electromagnetic wave scattering by a dielectric
structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering
matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay
upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of eva-
nescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with linelike
rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can
travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of
incident propagating waves.
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I. INTRODUCTION

The present work is devoted to the problem of energy
transformation between propagating �homogeneous� and
evanescent �exponentially decaying or near-field� electro-
magnetic waves at scattering by dielectric structures. This
problem was first discussed in the studies of total internal
light reflection on the boundary of two dielectric media �1�,
to give evidence of the existence of an evanescent wave in
the medium of lower refraction index. The interest in the
problem has been stimulated nowadays by near-field optics
development �2�, where a scanning probe interacts with an
optical near field, for example, a sample surface �3� or a
waveguide �4�. The radiation of a propagating wave created
by this interaction is collected in the far-field domain. The
collected far-field contains subwavelength information about
the sample surface or the mode profile of a waveguide, in the
case of the above examples. A specific actual problem con-
cerning the subwavelength resolution of spatial temperature
distribution inside a heated biological object, obtained on the
basis of an object thermal microwave radiation, arises in pas-
sive functional tomography of a human body �5�. For theo-
retical treatment, a probe and a scanned sample are repre-
sented in some cases �3,6–8� as electrical dipoles. A more
detailed consideration of the interaction of a scanning probe
with an evanescent wave is given in studies of the Mie scat-
tering of an evanescent wave by a dielectric sphere �9�, in-
cluding the case of structural resonances in the dielectric
sphere on a dielectric surface �10�. Mutual transformations of
energy between propagating and evanescent waves goes on
permanently in natural dense discrete disordered media, such
as snow and ice �11�, and artificial regular media, such as
patterned multilayer photonic structures �12� and photonic
crystals, in particular, at the formation of frequency transmis-
sion spectrum with a forbidden band gap �13� or at probing

the near-field properties of a structure near a forbidden band
gap �14�.

The scattering of a plane propagating electromagnetic
wave by a dielectric object is usually described in terms of a
scattering amplitude, which characterizes the scattered elec-
tric field in the far wave zone of the object. According to the
optical theorem �1�, the total scattering cross section of an
object is connected with an imaginary part of the scattering
amplitude, taken in the forward scattering direction. A physi-
cal meaning of the optical theorem consists in that the power
of an incident propagating wave undergoes extinction be-
cause of scattering.

We formulate an extended optical theorem for vector
wave scattering, evanescent waves included, by a dielectric
structure and show that a propagating wave created upon
scattering of an evanescent wave gives rise to an energy flux
�energy emission� in the direction of incident evanescent
wave decay. This effect is similar to the cold emission of
electrons from metals upon an applied electric field �15�,
which is a kind of tunneling. Note, in this connection, works
�16� and �17� where various diffraction phenomena were
treated as manifestations of tunneling. For example, a tun-
neling of electromagnetic radiation into cloud water droplets
�18� or silica microspheres �19� contributes significantly to
the meteorological glory or quality factor of whispering-
gallery modes in optical microsphere resonators, respec-
tively.

In Ref. �20�, the energy emission effect from evanescent
wave has been considered briefly. In this work, we consider
this effect in detail from a theoretical point of view with
different physical applications. Our derivation is based on
the formalism of Sommerfeld-Weyl angular-spectrum de-
composition of wave amplitudes �see, e.g., �21�� and the 2
�2 block S-scattering matrix �22� of a dielectric structure.
Unlike �22�, we express the S-matrix blocks, that is, two
reflection and two transmission operator coefficients, in
terms of the scattering operator �23� �T-matrix formalism
�24�� of the structure, following Ref. �25�. Using the optical*Corresponding author. E-mail address: barab@ipmt-hpm.ac.ru
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theorem �24� �see also �26–28�� for the scattering operator of
a dielectric lossless structure, we obtain an extended unitarity
of the S matrix for the case of electromagnetic �vector�
waves which generalizes the extended unitarity of the S ma-
trix for scalar waves obtained in �22� within macroscopic
consideration. Besides, our extended unitarity of the S matrix
is written in a compact operator form with the aid of a pro-
jector technique and a block Pauli matrix. The extended op-
tical theorem is a part of the extended unitarity of the S
matrix including the transmission and reflection coefficients
of a wave to be incident onto one side of a structure. Note
here that the extended unitarity of the S matrix cannot be
considered completely without the reciprocity relation for the
S matrix, which we write in compact form starting with the
reciprocity for the scattering operator �or for the Green’s ten-
sor function �29,30��, unlike that in �31� where the reciproc-
ity relations for the reflection and transmission coefficients
were derived by the direct use of Lorentz’s reciprocity theo-
rem. Some peculiarities of the effect of energy emission from
an evanescent wave are considered in two examples of eva-
nescent wave scattering, by an electrical dipole �three-
dimensional� �3D pointlike scatterer� and by a one-
dimensional diffraction grating with linelike rulings �2D
pointlike scatterers�. In the latter example, a linelike scatterer
is defined as a dielectric cylinder in the limit when the cyl-
inder diameter tends to zero, while the dielectric permittivity
of it tends to infinity, so that their product becomes constant.
A similar definition of a planelike scatterer �1D pointlike
scatterer� is given in �32,33�. The matrix coefficients of wave
transmission through and reflection from the 1D grating with
linelike rulings are evaluated by an asymptotic solution of
the Riccati and the associated equations �13,25�. These ma-
trix transmission and reflection coefficients are applied to the
problem of evanescent wave spatial spectroscopy based on
the effect of energy emission from an evanescent wave. In
accordance with two measuring methods known in the near-
field optics �2�, we consider two scenarios of evanescent
wave spatial spectroscopy: �i� by varying the distance be-
tween the reference plane of the incident evanescent wave
and the grating and �ii� by moving the grating along the
reference plane. For this purpose, an evanescent incidence
wave onto the 1D grating is specified as created by a plane-
like source, with the electric current density being parallel to
the grating rulings. The electric current density in the form of
a periodical array of linelike sources and periodically modu-
lated white noise source is studied. Within these forms of the
electrical current density we demonstrate an interference pat-
tern in energy emission of evanescent waves through 1D
grating with linelike rulings. Using the example of 1D grat-
ing with linelike rulings, we show that the energy flux emit-
ted from an evanescent wave upon its scattering by a dielec-
tric structure can travel through the structure even if the
structure has a forbidden gap in the transmission spectrum
for the incident propagating waves. In this connection we
discuss some results of the experiment �14� where light in-
teraction from a near-field probe with 3D photonic crystals
near a forbidden band gap was investigated.

The organization of the paper is as follows. In Sec. II the
tensor operator coefficients for transmission through and re-
flection from a dielectric structure of angular spectrum am-

plitudes of the electric field of an incident monochromatic
electromagnetic wave are defined in terms of the scattering
operator for the dielectric structure. The 2�2 block
S-scattering matrix is introduced. The extended unitarity for
the S matrix is formulated in compact operator form in Sec.
III, using an optical theorem for the scattering operator of a
dielectric structure. Here we also formulate the reciprocity
relation for the S matrix. The extended optical theorem for
the transmission and reflection coefficients of a dielectric
structure is formulated in Sec. IV. In this section, the basic
equation for the effect of energy emission from an evanes-
cent wave upon its scattering by a dielectric structure is also
derived. Section V presents two applications of the basic
equation for the effect of energy emission from an evanes-
cent wave upon its scattering, by electrical dipole and by 1D
grating with linelike rulings. Conclusions are made in Sec.
VI. Appendix A consists of an asymptotic solution of the
Riccati and the associated equations for the matrix coeffi-
cients for transmission through and reflection from the 1D
grating in the limit of linelike rulings. Appendix B gives
some details on recurrent procedure to retrieve evanescent
spectral orders.

II. SCATTERING MATRIX IN TERMS OF SCATTERING
OPERATOR

A. Basic equations

We start with the Helmholtz vector wave equation for the
electric field E�r� of a monochromatic electromagnetic wave
in a 3D inhomogeneous isotropic dielectric structure writing
the equation as

�����2 − ���� + ko
2 − V���r��E� = 0. �1�

Here ko=� /Co is the wave number in a background with the
frequency �, dielectric permittivity �o, and phase velocity
Co. An effective scattering tensor potential V���r�=V�r����

of the structure is defined by a scattering scalar potential
V�r�=−ko

2���r�−�o� /�o where ��r� is the structure dielectric
permittivity. The summation over repeated Greek subscripts
is implied in the limits from 1 to 3, with 1,2,3 corresponding
to the x ,y ,z axes of the Cartesian coordinate system, respec-
tively, and ��� is the Kronecker symbol. The magnetic per-
meability is supposed to equal unity all over.

We are interested in the electric wave field E�r� outside
�or inside� the dielectric structure, with the electric field of an
incident electromagnetic wave denoted E0�r�. In terms of the
Green tensor function G��

0 �r� in the background and the scat-
tering tensor operator T���r ,r�� of the structure, the electric
wave field of interest can be written, using tensor operator
denotations, as

E = E0 + G0TE0. �2�

Note here that the Green’s tensor function of the electric field
in the background G0 satisfies Helmholtz Eq. �1�, without the
scattering potential in the left-hand side �LHS� and with the
delta-source term �����r� in the right-hand side �RHS� of the
equation, and the scattering operator of electric field T satis-
fies the Lippman - Schwinger equation, T=V+VG0T. In what
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follows, we transform basic Eq. �2� for the scattered electric
field to represent it as the angular spectrum amplitudes.

B. Angular spectrum representation

Let a volume or a surface dielectric structure under con-
sideration occupy a region between planes z=0 and z=L and
a monochromatic electromagnetic wave be incident onto the
left boundary plane z=0 with the electric field E0�r� being
written as

E0�r� = �
k�

exp�ik� · r��E0�k�,z� . �3�

In the RHS of this equation the denotation �k�

= �2��−2�dk� is used, with k� being the component of a
wave-vector k transverse to the z axis. The angular spectrum
amplitude E0�k�� of the incident electric field is defined by
E0�k� ,z�=E0�k��exp�i�kz� and describes either a propagat-
ing or an evanescent wave, depending on k�	ko and �k

=�ko
2−k�

2 is real or k�
ko and �k= i�k�
2 −ko

2 is a purely
imaginary quantity, respectively. In angular spectrum repre-
sentation �34� the Green’s tensor function of the electric field
in the background has the form

G��
0 �r� = P�

k�

P��
tr �k̂±�

1

2i�k
exp�ik±r� +

1

ko
2 ẑ�ẑ���r� . �4�

Here P denotes a principal part of the singular integral. The
wave vectors of forward and backward going waves k±

=k±�k�� are defined by k±=k�±�kẑ, respectively, with ẑ
being the unit vector along the z axis, and stand in the RHS
of Eq. �4� for the cases of z
0 and z	0, respectively. The

tensor P��
tr �k̂�=���− k̂�k̂� denotes the orthogonal projector in

the direction perpendicular to the unit vector k̂ �transverse

projector�, k̂2=1, of the wave vector k that can be a complex

one, the unit vectors k̂±=k± /ko. Applying the angular spec-
trum representation to Eq. �2� and bearing in mind Eq. �4�
gives

E��k�,z� = E�
0�k�,z� + exp�− i�kz��

k��
B���k�,k�� �E�

0�k�� �

�5�

as z	0 and

E��k�,z� = exp�i�kz��
k��

A���k�,k�� �E�
0�k�� � �6�

as z
L. The tensor coefficients for transmission through
A���k� ,k�� � and reflection from B���k� ,k�� � the structure of
a generally inhomogeneous plane wave are given by

A���k�,k�� � = P��
tr �k̂+��k�,k

��
+

1

2i�k
a���k̂+, k̂+�� �7�

and

B���k�,k�� � =
1

2i�k
a���k̂−, k̂+�� , �8�

where k̂±� are the unit vectors along the vectors k±�k�� � and

�k�,k
��

denotes �2��2��k�−k�� �. The tensor a���k̂� , k̂���,
where � ,�=±, is a scattering tensor amplitude of the struc-
ture, defined in the case of plane waves as follows:

a���k̂�, k̂��� = P�
tr �k̂��T��k�,��k;k�� ,��k��P��

tr �k̂��� �9�

with T���k ,k�� being the 3D spatial Fourier transform of the
scattering operator T���r ,r�� of electric field by the structure

T���k,k�� =� dr� dr� exp�− i�k · r − k� · r���T���r,r�� .

�10�

Remember that in the case of a discrete dielectric object
�35�, the scattering tensor amplitude �9� of an inhomoge-
neous wave generalizes the familiar scattering amplitude by
an object �1� with the aid of analytical continuation into the
complex domain of scattering angles, in accordance with the
ideas of Sommerfeld and Weyl �see �21��, to consider both
the scattered far field and near field.

An electromagnetic wave may be incident upon the right
boundary plane z=L, as in Fig. 1, with an angular spectrum

amplitude Ẽ�
0�k��, which gives an incident electric field

Ẽ0�r� if expression Ẽ�
0�k� ,z�= Ẽ�

0�k��exp�−i�kz� is substi-
tuted into an equation similar to Eq. �3�. In this case, for the

transmitted through, Ẽ��r� and reflected from the structure

electric field �Ẽ��r�− Ẽ�
0�r�� we find

Ẽ��k�,z� = exp�− i�kz��
k��

Ã���k�,k�� �E�
0�k�� � �11�

as z	0 and

FIG. 1. A schematic presentation of a dielectric structure �gray
area� between two boundary planes and the energy emission from
an evanescent wave upon scattering by this structure.

OPTICAL THEOREM FOR ELECTROMAGNETIC FIELD… PHYSICAL REVIEW E 72, 026602 �2005�

026602-3



Ẽ��k�,z� = Ẽ�
0�k�,z� + exp�i�kz��

k��
B̃���k�,k�� �Ẽ�

0�k�� �

�12�

as z
L. Here the tensor coefficients of an inhomogeneous

plane wave transmission through Ã���k� ,k�� � and reflection

from B̃���k� ,k�� � the structure are given by

Ã���k�,k�� � = P��
tr �k̂−��k�,k

��
+

1

2i�k
a���k̂−, k̂−�� �13�

and

B̃���k�,k�� � =
1

2i�k
a���k̂+, k̂−�� . �14�

The 2�2 block S matrix of the structure is defined in
terms of the above tensor coefficients of wave transmission
through and reflection from the structure as follows:

S = �A B̃

B Ã
	 . �15�

The S matrix enables the calculation of angular amplitudes of

the fields transmitted through AE0�ÃẼ0� and reflected from

the BE0�B̃Ẽ0� structure, provided the angular amplitudes

E0�Ẽ0� of the incident fields are known.

III. EXTENDED UNITARITY AND RECIPROCITY
OF SCATTERING MATRIX

A. Optical theorem for the scattering operator in angular
spectrum representation

In the lossless case, the scattering operator T of the elec-
tric field by a dielectric structure obeys an optical theorem
�24� �see also �26–28�� that reads T−T†=T†�G0−G0†�T. Here
the “dagger” superscript denotes a complex conjugate trans-
pose of a tensor operator F���r ,r��, defined by
�F†����r ,r��=F��

* �r� ,r�, and the “star” superscript means a
complex conjugate. The application of the 3D spatial Fourier
transform �10� to the optical theorem for the scattering op-
erator, with allowance for the angular spectrum representa-
tion �4� of the tensor Green’s function in the background,
gives

T���p,p�� − T��
* �p�*,p*�

= �
k�;�k�	ko�

1

2i�k
�P��

tr �k̂−�T��
* �k−,p*�T���k−,p��

+ P��
tr �k̂+�T��

* �k+,p*�T���k+,p��� . �16�

Note that integration in the RHS of this identity goes on over
the transverse to the z axis component k� of the wave vector
of propagating waves only, k�	ko. Nevertheless, the three-
dimensional free momenta p and p� may be complex ones.
Taking p and p� to be equal to the complex wave-vectors k±

of forward and backward inhomogeneous waves, Eq. �16�
would give 16 separate tensor identities, with respect to the

cases of propagating and evanescent waves in both k+ and k−

wave vectors. A principal result consists in converting this
set of 16 tensor identities into a set of projections of one
energy identity for the scattering matrix �15�. This energy
matrix identity, which we will also refer to as extended uni-
tarity, can be written

�HprS�†�HprS� = HprIHpr − i�Hev�xS − �Hev�xS�†� .

�17�

This extended unitarity is written for a renormalized version
S of the S matrix �15� defined by

S = �A B̃

B Ã
	 
 �̂1/2S�̂−1/2, �18�

where �̂±1/2=diag��±1/2 ,�±1/2� are diagonal block matrices
with diagonal blocks equal to the tensor–operators
�k

±1/2��,��k�,k
��

. The complex conjugate transpose of a block
matrix in Eq. �17� is done as usual in block matrix algebra,
e.g., for the S matrix we have, �S†�ij = �S ji�†, where block
indices i , j=1,2 and the complex conjugate transpose of a
tensor operator F���k� ,k�� � is defined similar to the above
case of a tensor operator with the kernel depending on 3D
space position vectors. The symbols Hpr and Hev denote pro-
jectors on propagating and evanescent waves, respectively.
Specifically, the projector on propagating waves is a diagonal
block matrix, Hpr=diag�Hpr ,Hpr�, with diagonal blocks equal
to the tensor operator H�ko−k����,��k�,k

��
where the Heavi-

side step function H�x�=1 as x�0 and H�x�=0 as x	0. The
projector Hev=diag�Hev ,Hev� on evanescent waves is ob-
tained from the projector on propagating waves by replacing
the Heaviside function H�ko−k�� for propagating waves by
the Heaviside function H�k�−ko� for evanescent waves. A

block identity matrix I=diag�I , Ĩ�, with I and Ĩ being the

identity tensor operators P��
tr �k̂±��k�,k

��
, respectively, trans-

forming identically the transverse plane waves going forward
and backward with the wave-vectors k±, which may be com-
plex ones. We denote �x= �1 0

0 1� the 2�2 block matrix gener-
alization of the usual Pauli matrix �x.

Make some rearrangement in the block order of the scat-
tering matrix �18� taking

Sx = �B Ã

A B̃
	 = �xS . �19�

A similar scattering matrix was used in Ref. �22�, in the case
of scalar waves. The extended unitarity �17� takes a more
simple form in terms of the rearranged scattering matrix �19�

�HprSx�†�HprSx� = HprIHpr − i�HevSx − �HevSx�†� . �20�

B. Reciprocity of scattering matrix

The reciprocity of the scattering operator T of a dielectric
structure reads T���r ,r��=T���r� ,r�, which is a conse-
quence from similar reciprocity �29,30� of the Green’s tensor
function G of the electric field in a dielectric structure and a
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relation, T=V+VGV. To formulate a corresponding property
for the scattering matrix, denote �FR����k� ,k�� �=F���−k�� ,
−k��, where the superscript R means a reciprocity transfor-
mation of any tensor operator F���k� ,k�� �. In terms of this
denotation, the reciprocity of the renormalized scattering ma-
trix �18� means

SR 
 �AR BR

B̃R ÃR	 = �Ã B

B̃ A
	 = �xS�x. �21�

The first equality in Eq. �21� defines the reciprocity transfor-
mation of the renormalized scattering matrix; this definition
can be rewritten as �SR�ij = �S ji�R where the block indices
i , j=1,2. The obtained reciprocity �21�, after having been
written for each block separately, coincides with the result
reported in �31�.

The reciprocity �21� takes a more simple form in terms of
the rearrangement scattering matrix �19� as can be seen from
the relation

Sx
R = Sx. �22�

Applying the last reciprocity to the extended unitarity �20�,
we obtain another form of the extended unitarity

�SxH
pr��SxH

pr�† = HprIHpr − i�SxH
ev − �SxH

ev�†� . �23�

The two relations �20� and �23� mean a unitarity of the scat-
tering matrix in the case without evanescent waves �see, e.g.,
�36��.

IV. EXTENDED OPTICAL THEOREM

The extended optical theorem is obtained as part of the
extended unitarity �17� for the S matrix including the trans-
mission and reflection coefficients of a wave to be incident
upon the right side of the structure in the form

�HprÃ�†�HprÃ� + �HprB̃�†�HprB̃�

= HprĨHpr − i�HevB̃ − �HevB̃�†� . �24�

The projection of this relation on propagating waves gives a
conventional optical theorem �1�, written in terms of the
transmission coefficient deviation from an identity operator

�Ã= Ã− Ĩ and reflection coefficient B̃. The physical meaning
of the extended optical theorem �24� is disclosed through the

expressions for a total energy flux P̄z�z� along the z axis
direction in the regions z	0 and z
L. This flux is given by
integrating the z component of the Poynting’s vector for the
total electromagnetic field over the x ,y plane. The compari-

son shows that energy fluxes P̄z�z� in the regions on the left
and right from the boundary planes of the structure have the
same value in accordance with the optical theorem. For the
case of an incident propagating wave, where the renormal-

ized angular spectrum amplitude f̃��k��=�k
1/2Ẽ�

0�k�� satis-

fies the condition Hpr f̃ = f̃ , the energy flux along the z axis on
both sides of the structure is written as a sum of an incident
field energy flux and some antiflux, which gives rise to the

extinction of the incident field energy flux because of scat-
tering, according to equations

8��

c2 P̄z�z 	 0� =
8��

c2 P̄z�z 
 L�

= − �Hpr f̃ ,Hpr f̃� + �HprB̃Hpr f̃ ,HprB̃Hpr f̃� .

�25�

We have used here the Gaussian system of units and written
the second equality in terms of the scalar product for vector

functions of k� defined by, � f̃ , f̃��=�k�
f̃��k�� f̃��

*�k��. A dif-
ferent situation arises with an evanescent wave incidence,
which angular spectrum amplitude satisfies the condition

Hev f̃ = f̃ . In this case, the energy flux along the z axis is
negative on both sides of the structure according to equations

8��

c2 P̄z�z 	 0� =
8��

c2 P̄z�z 
 L�

= − �Hpr�ÃHev f̃ ,Hpr�ÃHev f̃� . �26�

This energy flux �emission� is created when an incident eva-
nescent wave is scattered by a dielectric structure into a wave
propagating in the direction of incident evanescent wave
�amplitude� decay. Note that the energy flux of the incident
evanescent wave itself propagates across the direction of
evanescent wave exponential decay �see Fig. 1�.

Consider two applications of basic Eq. �26� for the effect
of energy emission from an evanescent wave upon its scat-
tering by a dielectric structure.

V. APPLICATIONS FOR ENERGY EMISSION EFFECT

A. Energy emission from an evanescent wave upon
its scattering by electrical dipole

Let a dielectric structure in the form of an electrical dipole
�3D pointlike scatterer� be placed in the point r1. The scat-
tering operator of the electrical dipole is given �see, e.g.,
�37�� by T���k ,k��= t̃�����r−r1���r�−r1�. Here t̃ is the scat-
tering amplitude �t̃ matrix in �37��, which satisfies the optical
theorem, Qs= �t̃�2 / �6��=−Im t̃ /ko, with Qs being the scatter-
ing cross section of the dipole and Im denoting the imaginary
part of the quantity. Substitution of the dipole scattering op-
erator into definition �13� of the transmission coefficient and
the last one into the RHS of Eq. �26� gives

8��

c2 P̄z�z 	 0� =
8��

c2 P̄z�z 
 L� = −
1

2
koQs�

�

�Ẽ�
0�r1�ev��2,

�27�

where the incident electric field Ẽ�
0�r1 �ev� is of pure evanes-

cent nature. The obtained result shows that the effect of en-
ergy emission from an evanescent wave upon its scattering
by an electrical dipole enables one to obtain direct informa-
tion concerning the intensity distribution inside the evanes-
cent wave, using the dipole as a scanning probe. From the
practical point of view, it is more appropriate to use a system
of dipoles instead of one scanning dipole. Therefore, the sec-
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ond application for the emission Eq. �26� will be concerned
with evanescent wave incidence upon a 1D diffraction grat-
ing with linelike rulings �2D pointlike scatterers�.

B. Energy emission from evanescent wave upon its scattering
by 1D diffraction grating with linelike rulings

Let an electromagnetic wave be scattered by a 1D diffrac-
tion grating, whose rulings in the form of, e.g., cylinders
with the radius R, are parallel to the y axis and placed peri-
odically along the x axis with a period �. Suppose that the
grating occupies a region 0	z	h	L denoting h=2R. The
wave, with electric field being parallel to the rulings �TE
polarization�, is incident upon a plane z=L and has the form
of a series in the grating spectral orders

Ẽy
o�x,z� = �

�

expi
2��

�
x − i�����z − L��Ẽy

o��� . �28�

Here ����=�ko
2− �2�� /��2, with spectral orders �

=0, ±1, ±2,…, and the phases of the spectral orders are
evaluated from the reference plane z=L. The renormalized

matrix coefficients Ã,� and B̃,� for transformation of the
spectral order � into the spectral order  at transmission
through and reflection from the grating can be evaluated by
solving the Riccati and the associated equations �13,25�. In
the limit of a grating with linelike rulings, the width 2xo�z�
�section by plane z=const� of each single ruling tends to
zero, while the dielectric permittivity � of it tends to infinity,
so that the quantity a= x̄o��−�o� /�o, where x̄o=�R /4 is the
mean value of xo�z� with respect to z, tends to a constant.
Also suppose the height h of a single ruling to become so
small that the quantities xo�z� / ��� and ���z, with 0	z
	h, can be thought of as infinitesimally small which means
���max�min�� / x̄o ,� /h� and koh�1. In the limit of a
grating with linelike rulings, the above-mentioned Riccati
and the associated equations are asymptotically resolved �see
details in Appendix A� and the matrix coefficients of trans-
mission through and reflection from the grating take a simple
analytic form

Ã,� = �,� + B̃,�;

B̃,� =
i

2
b̂

1

�1/2���1/2���
. �29�

The quantity b̂ in the RHS of the last equation is defined by,

b̂=2/ ��− ig2�, with 1/�=ko
2ah /� and g2=�����max�1/���.

This quantity satisfies some analogy of optical theorem,

Im b̂= �1/2��b̂�2 Re�g2�, where the real part Re of g2 is posi-
tive, Re�g2�
0. Due to this analogy, the matrix coefficients
�29� of transmission through and reflection from a grating
with linelike rulings satisfy the extended optical theorem
�24�.

In a special case when ko��1 and evanescent spectral
orders do not contribute to the sum for g2 and the wave
interaction between rulings is not important, g2�� /2. Sub-

stituting this into the definition of b̂ leads to a relation

1/�b̂=1/4�o− i /4, with �o= �� /4��� /�o−1��koR�2�1,

showing that the quantity �b̂ coincides in this case with 4ibo
*

where bo is the monopole coefficient of electromagnetic
wave scattering by a single cylinder, which in the Rayleigh
scattering limit is expressed through the phase angle �o by a
simple way �38�. Therefore, in the general case the quantity

b̂ may be thought of as a cooperative scattering coefficient of
a ruling of a grating.

First, apply the transmission and reflection matrix coeffi-
cients �29� to the extinction equations �25�, which take the
form

8��

c2 P̄z�z 	 0� =
8��

c2 P̄z�z 
 L� = − �
pr

����Ẽy
0��pr��2

+
1

2
Im b̂�Ẽy

0�x = 0,z = 0�pr��2. �30�

Here the incident electric field Ey
0�x ,z �pr� consists of propa-

gating spectral orders =pr only.

The cooperative scattering coefficient b̂ can be of specific
resonant property under the conditions

ko� 	 2�, Im�g2� + � = 0, b̂ = i2ko, �31�

when the period � of a grating is smaller than the wave-
length in the background and the cooperative scattering co-
efficient becomes a purely imaginary quantity. The insertion
of Eq. �31� into extinction Eqs. �30� shows that under reso-
nance conditions a grating with linelike rulings does not
transmit a propagating wave. This forbidden frequency in the
radiation transmission spectra of a propagating incident wave
through the 1D grating under consideration can be estimated
roughly as �see the Appendix A� ko� /2��1−2�o

2 /�2, and
is similar to a forbidden frequency �39� in the case of a 2D
grating consisting of 3D pointlike scalar scatterers. The
width of a corresponding gap is estimated by �ko /ko
�16�o

3 /�3. In the two last estimations the quantity �o is
taken at ko=2� /�.

Turn now to basic Eq. �26� for the effect of energy emis-
sion, which in the case of a grating with linelike rulings leads
to

8��

c2 P̄z�z 	 0� = −
1

2
Im b̂�Ẽy

0�x = 0,z = 0�ev��2, �32�

where the incident electric field Ey
0�x ,z �ev� consists of eva-

nescent spectral orders only.
To make the physical sense of expression �32� more clear,

let � denote the minimum �lowest� evanescent wave spectral
order �, where 2���� /�
k0, by n1, and n2=n1+1 , n3=n1
+2, …, all other higher spectral orders of evanescent waves.

Take further Ek= Ẽy
0�nk�+ Ẽy

0�−nk�, where k=1,2,3,…, is an
amplitude of a symmetrical function with respect to the vari-
able x of an evanescent wave of the spectral order nk and
�k= ���nk��. Using these denotations we reduce the expres-

sion I�L �ev�= �Ẽy
0�x=0,z=0 �ev��2 to the form
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I�L�ev� = �
k

exp�− 2�kL��Ek�2

+ �
k�
k

exp�− ��k� + �k�L���k�,k�

= exp�− 2�1L��E1�2

+ exp�− ��2 + �1�L���2,1�

+ exp�− 2�2L��E2�2 + ¯ . �33�

Here a coefficient of interference ��k� ,k� between evanes-
cent spectral orders nk� and nk is defined by ��k� ,k�=Ek�Ek

*

+Ek�
* Ek=2�Ek���Ek�cos��k�−�k�, with �k� and �k being phases

of Ek� and Ek, respectively. Second Eq. �33� is written
in approximation of two evanescent spectral orders n1 and n2
in the series �28�. Equation �33� becomes an asymptotic ex-
pansion in the limit L→�. Bearing in mind a monotonous
increase of �k with k, we derive from asymptotic expansion
�33�, first, the evanescent wave intensity �E1�2 of the lower
spectral order n1 and then the coefficient ��2,1� of interfer-
ence between this lower and the first higher spectral order n2
of evanescent wave, if the function I�L �ev� is known. The
method of retrieving is based on a standard recurrent proce-
dure in the theory of asymptotic expansions �40� and sup-
poses, first, the use of the first term of expansion �33�, fol-
lowed by the subtraction of this term from I�L �ev� and
evaluation of the coefficient ��2,1� of the second term of
expansion �see details in Appendix B�. This procedure which
allows the retrieval of lower spectral orders of an evanescent
wave by varying the distance between its reference plane z
=L and the grating z=h, may be called a distant-spatial spec-
troscopy of an evanescent wave and is depicted in Fig. 2.
The higher the spectral order of an evanescent wave, the
faster its amplitude decreases with the distance from the ref-

erence plane z=L. Hence, in particular, an evanescent wave
of the lowest spectral order n1 can be scanned with a grating
at longer distance �for example, L−h in Fig. 2� from the
reference plane than an evanescent wave of the first higher
spectral order n2 �for example, L�−h in Fig. 2�.

Equation �33� can be a base not only for mentioned
distant—spatial but also for an interference—spatial spec-
troscopy of evanescent waves. Really the form of the second
Eq. �33� is similar to the well known interference law of two
monochromatic waves in optics �1�. Such similarity means
that the second Eq. �33� describes implicitly an interference
pattern in energy emission of evanescent spectral orders n1
and n2 through 1D grating with linelike rulings. To disclose
the interference pattern hidden in the second Eq. �33� we
need a detailed consideration of the source construction of
the incident evanescent wave. Besides, even the quantities
�Ek�2 describe an interference of two evanescent spectral or-
ders propagating along the grating in opposite directions in
accordance with definition of amplitudes Ek.

Returning to Eq. �28� we will note that this type of inci-
dent electric wave field may be created, for example, by a
planelike source with an electric current density j�x ,z� par-
allel to the y axis and confined inside a thin slab L−�L /2
	z	L+�L /2 with the �L thickness tending to zero and the
current density tending to infinity, such that the product
j�x�= �4�� / ic2�2�Ljy�x ,z� becomes constant. Supposing the
planelike source j�x� to be periodically varying along the x
axis according to the expansion

j�x� = �
�

exp�i
2��

�
x	 j� �34�

and bearing in mind that the incident electric field Ẽy
0�x ,z� in

Eq. �28� is expressed through the current density jy�x ,z� with
the aid of the scalar Green’s function in the background, we
can obtain the following relation:

Ẽy
o��� =

1

2i����
j�. �35�

In what follows, we consider two specific cases for the
planelike source j�x�.

C. Periodical array of linelike sources

Let the planelike source j�x� have the form of a periodical
array of linelike sources according to the representation

j�x� = jo��
�

��x − x�� , �36�

where x�=��− ��o /2��� are the points of the x axis inter-
section by linelike sources and jo is a positive quantity. The
quantity �o in the expression for x� defines a detuning be-
tween the positions of linelike sources in the plane z=L and
positions of the linelike rulings of a 1D grating �see the inset
in Fig. 3�. Substituting Eq. �36� into Eq. �34� gives j�, which
after the insertion into relations �35� leads to

FIG. 2. Schematic drawing of the distant-spatial spectroscopy of
an evanescent wave with a 1D grating of regularly �period �� situ-
ated cylinders �h=2R , R is cylinder radius� whose cross sections
are shown as gray filled circles. The TE-polarized evanescent wave
is incident upon the reference plane z=L or z=L�. The lowest �pe-
riod �� and first higher �period � /2� spectral orders are succes-
sively scanned by positioning the grating at the distances L−h and
L�−h from the corresponding reference planes.
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Ẽy
0��� =

1

2i����
jo exp�i��o� . �37�

The evaluation of the quantities �E1,2�2 and ��2,1� enables us
to specify the second Eq. �33�. As a result, the energy emis-
sion from an evanescent wave �32� becomes periodically
varying with a detuning parameter �o, by moving the grating
along the plane of sources, according to expression

I�L�ev� = jo
2�d1 cos n1�o + d2 cos n2�o�2 + ¯ , �38�

where dk=exp�−�kL� /�k and k=1,2. The behavior of the to-
tal expression in the RHS of Eq. �38� for different values of
the detuning parameter �o is depicted in Fig. 3. It is seen that
at an exact tuning, �o=0, when the linelike sources are po-
sitioned exactly under the linelike rulings of the 1D grating,
the emission intensity has a maximum. This maximum is
defined by the equation I�L �ev�= jo

2�d1+d2�2. In a detuning
case, when �o=� and the linelike sources are positioned
exactly between the linelike rulings, the emission intensity
decreases and is defined by the equation I�L �ev�= jo

2�d1

−d2�2. This theoretical result is in agreement with an experi-
mental result of Ref. �14� where more light transmitted
through a 3D photonic crystal was detected when the near
field probe tip was positioned on the top of a crystal sphere.
However, less light was detected when the tip was positioned
between the spheres of the crystal. Note, that Eq. �38� pre-
dicts a zero emission intensity at some special detuning �see
Fig. 3� rather than at �o=�.

D. Periodically modulated white noise source

Consider now a planelike source of thermal electromag-
netic radiation in the form of infinitesimally thin slab men-
tioned above, with the conductivity � tending to infinity,

such that the product �L� becomes constant. The planelike
source j�x� may be chosen in this case to be periodically
modulated along the x axis by a spatial white noise ��x�, that
is, j�x�=F�x���x�. Here F�x� is a periodic deterministic func-
tion given by a series in the grating spectral orders

F�x� = �
�

exp�i
2��

�
x	F� �39�

and ��x� is a stationary random spatial process

��x� = �
�

exp�i
2��

�
x	�� �40�

with noncorrelated random coefficients, ������
* �= ����2�����. A

correlation function of the planelike source is given accord-
ing to the two last equations by

�j�x�j*�x��� = �F�x��2����2���per�x − x�� , �41�

where �per�x� denotes a periodic � function coinciding with
the sum of � functions in the RHS of Eq. �36� at �o=0.
Following the fluctuation theory �41� of thermal electromag-
netic radiation, we suppose �F�x��2 to be a specification of the
radiating slab temperature T�x� periodically varying along
the x axis around the mean temperature To as in the expan-
sion

�F�x��2 =
T�x�
To

= �
�

exp�i
2��

�
x	F̂� �42�

with F̂�=�FF−�
* = F̂−�

* . Simultaneously the mean intensity
����2� of thermal fluctuation inside the radiating slab is sup-
posed to be proportional to the product To�L�. The correla-
tion function �41� of the source fluctuations leads to the fol-
lowing correlation matrix of spectral amplitudes �35� of an
electric field �28� created by a planelike source of electro-
magnetic thermal radiation

�Ẽy
o���Ẽy

o*����� =
1

4�����*����
����2�F̂�−��. �43�

Turn to the expression in the second Eq. �33� for the en-
ergy emission �32� from an evanescent wave �28� upon its
scattering by a diffraction grating with linelike rulings. In the
case of an incident evanescent wave created by a planelike
source of thermal electromagnetic radiation, averaging of the
expression mentioned over the ensemble of thermal fluctua-
tions based in Eq. �43� gives

�I�L�ev�� =
1

2
����2��d1

2�1 + Re F̂2n1
�

+ 2d1d2�Re F̂n2−n1
+ Re F̂n1+n2

�

+ d2
2�1 + Re F̂2n2

�� + ¯ , �44�

where F̂o=1. We see that this averaged expression enables

the retrieval of the amplitude Re F̂2n1
of a symmetrical func-

tion with respect to the x variable harmonics of the tempera-
ture spatial distribution �42�, with the spatial frequency

FIG. 3. Solid curves are the results of numerical calculations of
the dimensionless emission intensity I�L �ev�ko

2 / jo
2 �Eq. �38�� versus

detuning �o between linelike sources and linelike rulings of the 1D
grating �see the inset�. The values of the parameters are taken from
Ref. �14�: �o=2� /ko=647 nm, �=482 nm, L−h=10 nm �curve
1�, and 84 nm �curve 2�. The inset schematically presents investi-
gation of the energy emission effect from an evanescent wave gen-
erated by a periodical array of linelike sources �black filled circles�
in the plane z=L. The linelike sources and rulings of the 1D grating
�gray filled circles� have a detuning ��o /2���.
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4�n1 /�
ko by varying the distance between the reference
plane z=L and the grating z=h. It is then possible to retrieve

a sum, Re F̂n2−n1
+Re F̂n1+n2

, of amplitudes of the tempera-
ture symmetrical harmonics with spatial frequencies, 2� /�,
which may be less than ko, and 2��n1+n2� /�
ko.

To disclose an interference pattern hidden in Eq. �44�
for the averaged energy emission �32� in approximation
of two evanescent spectral orders n1 and n2 in series
�28�, we will specify the temperature distribution �42� by

putting F̂�= �F̂��exp�i��o�. In this case the radiating slab tem-
perature is expanded in a series along cosine harmonics

2�F̂��cos��2�� /���x+�o� /2��� with amplitudes 2�F̂�� and
detuning �o between positions of the cosine maximums and
the linelike ruling of the 1D grating �see the inset in Fig. 4�.
We specify further the two considered evanescent spectral
orders in series �28� to be n1=1 and n2=2 and take into
account only the first cosine harmonics of order �=1 with

amplitude 2�F̂1� of the radiating slab temperature distribu-
tion. After these simplifications Eq. �44� takes the form

�I�L�ev�� =
1

2
����2��d1

2 + d2
2 + 2d1d2�F̂1�cos �o� , �45�

where an apparent condition 2�F̂1�	1 should be held. This
simplest interference pattern for averaged energy emission
through the 1D grating with linelike rulings from evanescent
waves created by the planelike source of electromagnetic
thermal radiation is depicted in Fig. 4. Equation �45� de-
scribed this interference pattern is similar to that known in
optics �1� as the interference law of two coherent in part light

beams, with �F̂1� being a degree of coherence of two evanes-
cent spectral orders.

E. Separation of the energy emission effect

Note that when an incident electric field �28� consists of
both propagating and evanescent spectral orders, the energy
flux transmitted through the grating includes an extra cross
term in Eqs. �30� and �32�. This extra term is proportional, in
the case of a grating with linelike rulings, to the real part

Re b̂ of the cooperative scattering coefficient b̂ and describes
an interference between the contributions of propagating and
evanescent spectral orders to the energy flux transmitted
through the grating according to

8��

c2 P̄z�z 	 0� = Re b̂ Im�Ẽy
0*�x = 0,z = 0�pr�

�Ẽy
0�x = 0,z = 0�ev�� . �46�

In what follows, we suppose the period � of grating to be
smaller than the wavelength in the background ko�	2�
when there is only one propagating spectral order pr=0 and
all another spectral orders n1=1 ,n2=2 ,n3=3, …, are related
to evanescent waves. In this case, the expression
I�L �pr,ev�=Im�Ey

0*�x=0,z=0 �pr�Ey
0�x=0,z=0 �ev�� takes

the form

I�L�pr,ev� = �
k

exp�− �kL�Im�exp�− ikoL�Ẽy
0*�pr = 0�Ek� .

�47�

This expression becomes an asymptotic expansion under the
conditions �37� of a periodical array of linelike sources

I�L�pr,ev� = −
1

2ko
jo
2 cos�koL��

k

dk cos k�o. �48�

Under conditions �43� of a periodically modulated white
noise source, the averaging expression �47� over the en-
semble of thermal fluctuations gives

�I�L�pr,ev�� = −
1

2ko
����2�cos�koL��

k

dk Re F̂nk
, �49�

where Re F̂1 and Re F̂2 are amplitudes of symmetrical func-
tions with respect to the x variable harmonics of the tempera-
ture spatial distribution �42�, with the spatial frequencies
2� /�
ko and 4� /�
ko.

Compare expressions �30�, �32�, and �46� for energy
fluxes transmitted through a grating with linelike rulings and
caused by the contributions of propagating, evanescent spec-
tral orders of an incident electric field �28� to these fluxes
and by the interference between these contributions, respec-
tively. Contribution �30� of propagating spectral orders can
be separated because this contribution does not tend to zero
exponentially fast with an increasing distance between the
source plane z=L of an incident electric field and a grating
z=h. The more difficult problem is to separate the energy
emission effect �32� caused by the contribution of evanescent

FIG. 4. Solid curves are the results of numerical calculations
of the dimensionless emission intensity �I�L �ev��2ko

2 / ����2� �Eq.
�45�� versus detuning �o between position of the maximums of
the first cosine harmonics of planelike source of thermal radiation
and linelike rulings of the 1D grating �see the inset�. The values
of the parameters are taken according to Ref. �5�: �o=10 cm,

�=8 cm, L−h=0.5 cm�curve 1� and 1 cm �curve 2�; 2�F̂1�=0.8.
The inset schematically presents an investigation of the energy
emission effect from an evanescent wave generated by the planelike
source of electromagnetic thermal radiation �the solid line repre-
sents the first cosine harmonics� in the plane z=L. The position of
the harmonics maximums and the linelike rulings of the 1D grating
�gray filled circles� have a detuning ��o /2���.
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incident spectral orders from the energy flux �46� caused by
the interference between the contributions of propagating
and evanescent incident spectral orders. The radical solution
to the problem of energy emission separation is to use the
resonant conditions �31�, under which the real part of the

cooperative scattering coefficient b̂ tends to zero and the en-
ergy flux transmitted through a grating with linelike rulings
consists of the contribution of evanescent spectral orders of
an incident electric field alone.

VI. SUMMARY AND CONCLUSIONS

In this paper we have derived a basic equation for the
effect of energy emission from an evanescent wave when
scattered by a dielectric structure. Starting with a derived
basic equation and using 1D grating with linelike rulings as a
dielectric structure, we considered the distant-spatial and
interference-spatial spectroscopy of evanescent waves. Both
these scenarios of evanescent wave spatial spectroscopy
were illustrated on examples of evanescent waves created by
a planelike source with electrical current density being par-
allel to rulings of the grating. These examples were related to
the problem to access optical details within the unit cell of a
photonic crystal beyond the diffraction limit and to the prob-
lem of retrieving lower subwavelength spatial harmonics of
temperature distribution along a planelike heated object, us-
ing the object thermal radiation. A serious problem arises
concerning the separation of the transmitted �through a struc-
ture� energy flux coming from evanescent incident spectral
orders from the flux caused by the interference of incident
propagating and evanescent wave spectral orders. The radical
solution to this problem is obtained by applying the 1D grat-
ing with line rulings and with a forbidden gap in the spec-
trum of radiation transmission for the incident propagating
spectral order when the energy flux transmitted through the
grating consists of contribution of evanescent spectral orders
in the incident electric field only.
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APPENDIX A: ASYMPTOTIC SOLUTION TO MATRIX
RICCATI EQUATION FOR 1D GRATING

WITH LINELIKE RULINGS

The renormalized matrix coefficients Ã,� and B̃,� for the
transformation of the spectral order � into the spectral order
 at the transmission through and reflection from the 1D
grating considered in Sec. V B satisfy the matrix Riccati and
the associated equations �13,25� in the form

dB̃

dz
=

Vo

2�i
�U−1 + B̃U�M̂�U−1 + UB̃� �A1�

and

dÃ

dz
=

Vo

2�i
ÃUM̂�U−1 + UB̃� �A2�

as 0	z	h and the “initial” conditions, B̃�z=0�=0 and

Ã�z=0�= Ĩ where Ĩ is an identical matrix ��. The seeking
matrix reflection and transmission coefficients of the grating
are given by solutions of Eqs. �A1� and �A2�, respectively,
taken at z=h. In these two equations Vo denotes the scatter-
ing potential of a single cylindrical ruling and a diagonal
matrix of free “evolution” U�=exp�i���z���. The matrix

M̂ describes mutual transformations of both propagating and
evanescent spectral orders because of their multiple scatter-
ing on the grating rulings. This transformation matrix is de-

fined by M̂�=�−1/2��M−��−1/2��� where

M =
1


sin2�

�
xo�z�� . �A3�

In the limit of a grating with linelike rulings the last func-
tion tends to its limit form, M→2�xo�z� /�. We also re-
place the diagonal matrix U�z� and its inverse U−1�z� by the

identity matrix Ĩ in the limit under consideration. As a con-
sequence, the system of Eqs. �A1� and �A2� is transformed
into the following limit form:

dB̃

dz
= v�Ĩ + B̃���Ĩ + B̃� �A4�

and

dÃ

dz
= vÃ��Ĩ + B̃� , �A5�

where v= iko
2ag2 /� and the matrix � is defined by ��

=g−2�−1/2���−1/2���. We seek a solution to the system of
Eqs. �A4� and �A5� in a finite-dimensional complex linear
space, with �� , ���	max. In this linear space the matrix � is
idempotent �see, e.g., Ref. �42�� having the property �2=�.
This property enables one to transform a solution of the ma-
trix Riccati Eq. �A4� into a solution of a scalar Riccati equa-

tion that gives B̃�z�=vz�1−vz�−1� and Ã�z�= Ĩ+ B̃�z�. Taking
here z=h leads to Eqs. �29�.

Some remarks are pertinent here concerning the resonant

conditions �31�. The cooperative scattering coefficient b̂ is
rewritten as

b̂ =
2�

�
y�x� −

i

2x1/2�−1

, �A6�

where x= ��ko /2��2	1 and
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y =
�

2�o
− �

=1

max

�2 − x�−1/2. �A7�

The terms under sum in the RHS of the last equation and an
illustration of the graphic solution to the resonant equation
y�x�=0 are depicted in Fig. 5. Because of condition �o�1,
the main contribution to the solution xo of the resonant equa-
tion is given the first term with =1 under the sum men-
tioned. Putting � /2�o��1−x�−1/2, we obtain xo�1
− �2�o /��2 that gives a forbidden frequency in the radiation
transmission spectra of a propagating wave through the 1D
grating with linelike rulings presented before Eq. �32�. The

expansion of the function y�x� into the Taylor series near the
resonant point xo, gives a resonant asymptotic for the coop-

erative scattering coefficient b̂ in the form b̂�2iko�1− i�ko

−koo� /�ko�−1 where koo�2� /� and the resonant width �ko

is also presented before Eq. �32�.

APPENDIX B: DISTANT-SPATIAL SPECTROSCOPY OF
EVANESCENT WAVES

Consider the second Eq. �33� in the limit L→�. Bearing
in mind that �1	�2, one can obtain directly three following
limit relations:

lim
L→�

exp�2�1L�I�L�ev� = �E1�2, �B1�

and

lim
L→�

exp���2 + �1�L��I�L�ev� − exp�− 2�1L��E1�2� = ��2,1� ,

�B2�

and

lim
L→�

exp�2�2L��I�L�ev�

− exp�− 2�1L��E1�2 − exp�− ��2 + �1�L���2,1�� = �E2�2.

�B3�

In the case of three, four, etc., evanescent spectral orders
taken into account, the limit relations �B1� and �B2� are not
changed but the relation �B3� is changed in part because of
inequality �1+�3	2�2.
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